Limits of Deterministic Compressed Sensing Considering Arbitrary Orthonormal Basis for Sparsity
نویسندگان
چکیده
It is previously shown that proper random linear samples of a finite discrete signal (vector) which has a sparse representation in an orthonormal basis make it possible (with probability 1) to recover the original signal. Moreover, the choice of the linear samples does not depend on the sparsity domain. In this paper, we will show that the replacement of random linear samples with deterministic functions of the signal (not necessarily linear) will not result in unique reconstruction of k-sparse signals except for k = 1. We will show that there exist deterministic nonlinear sampling functions for unique reconstruction of 1sparse signals while deterministic linear samples fail to do so.
منابع مشابه
Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques
We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required nu...
متن کاملTensorial Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning
High Angular Resolution Diffusion Imaging (HARDI) can characterize complex white matter micro-structure, avoiding the Gaussian diffusion assumption inherent in Diffusion Tensor Imaging (DTI). However, HARDI methods normally require significantly more signal measurements and a longer scan time than DTI, which limits its clinical utility. By considering sparsity of the diffusion signal, Compresse...
متن کاملCompressed sensing signal models - to infinity and beyond?
Compressed sensing is an emerging signal acquisition technique that enables signals to be sampled well below the Nyquist rate, given a finite dimensional signal with a sparse representation in some orthonormal basis. In fact, sparsity in an orthonormal basis is only one possible signal model that allows for sampling strategies below the Nyquist rate. We discuss some recent results for more gene...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملNear oracle performance and block analysis of signal space greedy methods
Compressive sampling (CoSa) is a new methodology which demonstrates that sparse signals can be recovered from a small number of linear measurements. Greedy algorithms like CoSaMP have been designed for this recovery, and variants of these methods have been adapted to the case where sparsity is with respect to some arbitrary dictionary rather than an orthonormal basis. In this work we present an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0901.3408 شماره
صفحات -
تاریخ انتشار 2009